Isolation and characterization of all-trans-retinoic acid-responsive genes in the rat testis

Author(s):  
Ingrid C. Gaemers ◽  
Ans M.M. Van Pelt ◽  
Axel P.N. Themmen ◽  
Dirk G. De Rooij
Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4131-4143 ◽  
Author(s):  
Alan K. Burnett ◽  
David Grimwade ◽  
Ellen Solomon ◽  
Keith Wheatley ◽  
Anthony H. Goldstone

Abstract All-trans retinoic acid (ATRA) is an essential component of the treatment of acute promyelocytic leukemia (APL), but the optimal timing and duration remain to be determined. Molecular characterization of this disease can refine the diagnosis and could be potentially useful in monitoring response to treatment. Patients defined morphologically to have APL were randomized to receive a 5-day course of ATRA before commencing chemotherapy or to receive daily ATRA commencing with chemotherapy and continuing until complete remission (CR). The chemotherapy was that used in current MRC Leukaemia Trials. Outcome comparisons were by intention to treat with additional analysis for relevant risk factors. Patients were characterized by molecular techniques for the fusion products of the t(15;17) and monitored by reverse transcriptase-polymerase chain reaction (RT-PCR) during and after treatment. Two hundred thirty-nine patients were randomized. Treatment with extended ATRA resulted in a superior remission rate (87% v 70%, P < .001), due to fewer early and induction deaths (12% v 23%, P = .02), and less resistant disease (2% v 7%, P = .03), which was associated with a significantly more rapid recovery of neutrophils and platelets. Extended ATRA reduced relapse risk (20%v 36% at 4 years, P = .04) and resulted in superior survival (71% v 52% at 4 years, P = .005). Presenting white blood cell count (WBC) was a key determinant of outcome. The 70% of patients who presented with a WBC less than 10 × 109/L had a better CR (85% v62%, P = .0001) and reduced relapse risk (22% v42%, P = .002) and superior survival (69%v 43%, P < .0001). Within the low count group, extended ATRA resulted in a better CR (94% v 76%, P= .001), reduced relapse risk (13% v 35%, P = .04), and improved survival (80% v 57%, P = .0009). There was no evidence of benefit in patients presenting with a higher WBC (>10 × 109/L). Molecular monitoring after the third chemotherapy course had a correlation with risk of relapse. The relapse risk was 57% if the RT-PCR was positive versus 27% if the RT-PCR was negative (P = .006). APL patients who present with a low WBC derive substantial benefit from combining ATRA with induction chemotherapy until remission is achieved, whereas patients with a higher WBC did not benefit. Molecular characterization of disease can improve diagnostic precision and a positive RT-PCR after consolidation identifies patients at a higher risk of relapse.


2012 ◽  
Vol 87 (2) ◽  
pp. 1176-1184 ◽  
Author(s):  
Ali Fattahi ◽  
Mohammad-Ali Golozar ◽  
Jaleh Varshosaz ◽  
Hamid Mirmohammad Sadeghi ◽  
Mohammadhossein Fathi

Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4131-4143 ◽  
Author(s):  
Alan K. Burnett ◽  
David Grimwade ◽  
Ellen Solomon ◽  
Keith Wheatley ◽  
Anthony H. Goldstone

All-trans retinoic acid (ATRA) is an essential component of the treatment of acute promyelocytic leukemia (APL), but the optimal timing and duration remain to be determined. Molecular characterization of this disease can refine the diagnosis and could be potentially useful in monitoring response to treatment. Patients defined morphologically to have APL were randomized to receive a 5-day course of ATRA before commencing chemotherapy or to receive daily ATRA commencing with chemotherapy and continuing until complete remission (CR). The chemotherapy was that used in current MRC Leukaemia Trials. Outcome comparisons were by intention to treat with additional analysis for relevant risk factors. Patients were characterized by molecular techniques for the fusion products of the t(15;17) and monitored by reverse transcriptase-polymerase chain reaction (RT-PCR) during and after treatment. Two hundred thirty-nine patients were randomized. Treatment with extended ATRA resulted in a superior remission rate (87% v 70%, P < .001), due to fewer early and induction deaths (12% v 23%, P = .02), and less resistant disease (2% v 7%, P = .03), which was associated with a significantly more rapid recovery of neutrophils and platelets. Extended ATRA reduced relapse risk (20%v 36% at 4 years, P = .04) and resulted in superior survival (71% v 52% at 4 years, P = .005). Presenting white blood cell count (WBC) was a key determinant of outcome. The 70% of patients who presented with a WBC less than 10 × 109/L had a better CR (85% v62%, P = .0001) and reduced relapse risk (22% v42%, P = .002) and superior survival (69%v 43%, P < .0001). Within the low count group, extended ATRA resulted in a better CR (94% v 76%, P= .001), reduced relapse risk (13% v 35%, P = .04), and improved survival (80% v 57%, P = .0009). There was no evidence of benefit in patients presenting with a higher WBC (>10 × 109/L). Molecular monitoring after the third chemotherapy course had a correlation with risk of relapse. The relapse risk was 57% if the RT-PCR was positive versus 27% if the RT-PCR was negative (P = .006). APL patients who present with a low WBC derive substantial benefit from combining ATRA with induction chemotherapy until remission is achieved, whereas patients with a higher WBC did not benefit. Molecular characterization of disease can improve diagnostic precision and a positive RT-PCR after consolidation identifies patients at a higher risk of relapse.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Stephen E. Langabeer ◽  
Lisa Preston ◽  
Johanna Kelly ◽  
Matt Goodyer ◽  
Ezzat Elhassadi ◽  
...  

Several variantRARAtranslocations have been reported in acute promyelocytic leukemia (APL) of which the t(11;17)(q23;q21), which results in aZBTB16-RARAfusion, is the most widely identified and is largely resistant to therapy with all-trans retinoic acid (ATRA). The clinical course together with the cytogenetic and molecular characterization of a case of ATRA-unresponsiveZBTB16-RARAAPL is described. Additional mutations potentially cooperating with the translocation fusion product in leukemogenesis have been hitherto unreported inZBTB16-RARAAPL and were sought by application of a next-generation sequencing approach to detect those recurrently found in myeloid malignancies. This technique identified a solitary, low level mutation in theCEBPAgene. Molecular profiling of additional mutations may provide a platform to individualise therapeutic management in patients with this rare form of APL.


2021 ◽  
Vol 138 (21) ◽  
pp. 50480
Author(s):  
Pedro Henrique Souza Cesar ◽  
Caio Vinicius Lima Natarelli ◽  
Juliano Elvis de Oliveira ◽  
Paula Ariane Andrade ◽  
Tamara Leite Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document